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Abstract

CrossMark

This paper proposes the ‘skin effect’ of the machining-induced damage at high strain rates. The
paper first reviews the published research work on machining-induced damage and then
identifies the governing factors that dominate damage formation mechanisms. Among many
influential factors, such as stress—strain field, temperature field, material responses to loading and
loading rate, and crack initiation and propagation, strain rate is recognized as a dominant factor
that can directly lead to the ‘skin effect’ of material damage in a loading process. The paper

elucidates that material deformation at high strain rates (>10°s

*1) leads to the embrittlement,

which in turn contributes to the ‘skin effect’ of subsurface damage. The paper discusses the ‘skin
effect’ based on the principles of dislocation kinetics and crack initiation and propagation. It
provides guidance to predicting the material deformation and damage at a high strain-rate for
applications ranging from the armor protection, quarrying, petroleum drilling, and high-speed
machining of engineering materials (e.g. ceramics and SiC reinforced aluminum alloys).
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(Some figures may appear in colour only in the online journal)

1. Introduction

The term ‘skin effect’ has been used to describe distribution
of the alternating current in a conductor that electric current
mainly flows in the ‘skin’ layer of the conductor. The current
density is the highest at the surface layer of the conductor and
quickly decreases in the inner layers. The ‘skin effect’ is
further strengthened at a higher frequency of the alternating
current. Similarly, the authors have found that the ‘skin effect’
of subsurface damage (SSD) distribution also exists in
Original content from this work may b_e used um.ier the terms
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material deformations. The ‘skin effect’ of SSD distribution
can be enhanced at a higher strain rate in a loading process.

Generally, an increased strain-rate results in embrittlement
of the material subjected to loading, which in turn leads to the
‘skin effect’. For example, in armor applications, the brittle-
ness of the material greatly affects the ballistic performance of
an armor. Ceramics generally have better resistance to the
ballistic impact than metallic materials [1, 2]. Another example
is the high-speed machining (HSM) of engineering materials,
such as ceramics and SiC reinforced aluminum alloys. High
speeds of machining could embrittle the workpiece material
and suppress SSD depth because of the ‘skin effect’.

We are living in a world that needs support from various
materials. How these materials may serve our purposes has
been a subject of study. Some materials are harder and more
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Figure 1. Maximum flank wear of the different tool inserts versus
machining time (cutting speed: 100 m min ", feed: 75 pm/rev,
depth of cut: 1.0 mm, coolant: 5% vol. trim solution). Reprinted
from [23], Copyright (2012), with permission from Elsevier.

brittle (e.g. ceramics, semiconductors, cast irons) than others
(e.g. most metals). It is necessary to shape the materials into
various products with the help of modern manufacturing
technologies, such as machining, laser beam cutting, forming,
forging and welding. On the other hand, we want the products
to perform the functions as we desire. These functions may
include strength and toughness, fatigue strength (e.g. aircraft
engines and bridges), wear resistance (e.g. bearings and cut-
ting tools), etc. To achieve the respective functions, the right
materials must be chosen for the appropriate applications.
Titanium, Inconel, and aluminum alloys, for example, are
normally used in the aerospace applications [3, 4]. Crystalline
silicon is a typical substrate material for the semiconductor
[5-7] and photovoltaic industries [8, 9]. Sapphire is used as
the substrate material for LEDs [10-12]. Ceramics have been
used in the high-precision bearings and cutting tools [13, 14].
Glasses are indispensable materials for optics and light
transmission [15]. However, the above-mentioned materials
can easily be induced with SSD when they are subjected to
machining.

In machining of titanium, Inconel and aluminum alloys,
work hardening and tool wear are notable, resulting in a
metamorphic layer on the machined surface [16—19]. Generally,
the metamorphic layer degrades the service performance of a
part because of the different mechanical properties from the
bulk material, such as hardness, toughness, and plasticity
[20, 21]. On the other hand, materials, such as SiC, sapphire,
and silicon, are hard and brittle, and can easily be introduced
with SSD during a machining process [7, 15, 22], which is
detrimental to the performance and lifetime of a part.

As shown in figure 1, an as-received cutting tool insert
offered a lifetime of approximately 49 min. However, when
another insert of the same batch from the same manufacturer
was finished by the magnetic abrasive finishing (MAF)
technique, its lifetime was 86 min, almost doubling the life-
time of the as-received version. Why should this happen?
What is the function of MAF on the lifetime of the insert?

(b) Cross-sectional view

Figure 2. SEM images of (a) top view and (b) cross-sectional view of
a smooth groove generated by grinding in an alumina sample. [24]
(1988) © Chapman and Hall Ltd. With permission of Springer.

To answer these questions, an early work conducted by
Zhang et al [24, 25] should be referred to. In their work, Zhang
et al produced a smooth groove in a hot-pressed alumina sample
in the single-point grinding process at a speed of 1800 m min ™.
Figure 2 shows the images of the groove taken from the top and
cross-sectional views by a scanning electron microscope (SEM).
Figure 2(a) presents the top view of the groove with a smooth
surface. Although the groove did not show any observable
damage (e.g. cracking, chipping), its subsurface was severely
damaged with a layer of pulverization, as shown in figure 2(b).
Moreover, the cross-sectional view reveals that material pile-up
occurred to the two sides of the groove. The pile-up was clearly
because of the side flow of the pulverized material. Therefore,
pile-up does not have to be plastic deformation in the machining
of the hard and brittle materials.

Based on the understanding of figure 2, it is suggested
that the cutting edge of the as-received insert in figure 1
should have been left with the grinding-induced SSD which is
responsible for the compromised tool life. Upon the removal
of SSD by the MAF technique, tool life was largely extended,
as depicted in figure 1. Therefore, the removal of the
machining-induced damage is beneficial to the improvement
of the performance and lifetime of a cutting tool.

Over the years, continuous efforts have been made in
machining of hard and brittle materials. Bifano ez al [26] were
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the first to propose the ‘ductile-regime’ machining technique
for brittle materials to achieve high-quality grinding.
Although ‘ductile-regime’ machining has received much
attention, it is still controversial as it lacks both theoretical
and experimental support. This technique is mainly concerned
with surface finish with no consideration of SSD of a
machined workpiece. It has not solved the machining pro-
blems of the hard and brittle materials.

In order to solve these problems, Zhang et al [25] used a
different approach. They not only investigated the surface but
also the subsurface characteristics of a machined workpiece.
They were the first to report the material pulverization
mechanism together with the other forms of machining-
induced SSD in ceramics [24, 25, 27-30]. Their findings have
been applied in industry for high efficiency and low damage
machining of ceramic materials.

Ultrasonically-assisted machining (UAM) has success-
fully been used in reducing machining force and improving
surface integrity for the hard and brittle materials [31-35]. In
fact, UAM helps suppress machining-induced damage,
enhance the critical depth of cut [31], reduce machining
forces [32, 36], and alter material properties [37]. UAM has a
great potential for machining of the hard and brittle materials,
however, there are still critical issues to be resolved. The
issues include how UAM suppresses the machining-induced
damage and improves workpiece surface integrity.

HSM has attracted much attention because of its
improvement in machining efficiency, reduction in tool wear,
and suppression in workpiece damage as compared to the
conventional machining [38—40]. HSM can be applied to
many different materials with no specific requirements on the
workpiece properties. Most of all, HSM leads to a high strain
rate which results in the so-called ‘skin effect’, namely, the
machining-induced SSD tends to distribute in the superficial
layer of a workpiece machined at a high strain rate [41-45].
Therefore, HSM presents a huge potential in high-efficiency
machining of the above-mentioned materials. However, the
underlying mechanisms of the ‘skin effect’ of SSD distribu-
tion remain unrevealed and need investigations.

This paper is to explore the mechanisms of the ‘skin
effect’ of SSD at high strain rates and its application to HSM.
Among the differences between HSM and the low-speed
machining, the strain rate is the primary factor. This paper
presents the ‘skin effect’” of SSD distribution at high strain
rates (>10%s™!) with section 2 dealing with the ‘skin effect’
of machining-induced damage. Section 3 discusses the
underlying mechanisms of the ‘skin effect’ at high strain
rates; section 4 discusses the ‘skin effect’ in terms of dis-
location and energy theories; section 5 concludes the paper
and presents an outlook.

2. ‘Skin-effect’ of damage at high strain rates

In machining, the plastic strain rate de/dt is regarded as a
function of rake angle « of a cutting tool, shear angle ¢,
cutting speed V, and the elemental chip thickness Ay, as

presented in equation (1) [46, 47],

de V cosy )
dt  Aycos(p —7)

where the elemental chip thickness is related to the depth of
cut. However, equation (1) cannot be used to calculate the
strain rate in the machining of hard and brittle materials
because these materials do not normally show notable plastic
deformation before fracturing. Wang et al proposed a simple
formula for calculating strain rate, shown as equation (2) [48],

de \%
—_ ==, 2
dt ac )

where a, represents depth of cut. Equation (2) describes strain
rate in the region of a material compressed by a cutting tool.
In this study, equation (2) is adopted to calculate strain rate
based on the previous studies. As shown in figure 3, the SSD
depth in the hard and brittle materials decreases with an
increase in strain rate of machining, which well depicts the
‘skin effect’ of damage formation in terms of strain rate. The
best fitting line in figure 3 shows that the SSD depth is
mathematically proportional to the negative exponent of
strain rate, as presented in equation (3),

—0.34

where k is a constant (k = 1531 in figure 3).

In addition, the ‘skin effect’ can also be found in the
metallic materials. The ‘skin effect” was identified in the
early works conducted on IN-718 by Pawade et al [60], on
the nickel-based FGH95 superalloys by Jin et al [42, 43], on
the D2 tool steels by Kishawy and Elbestawi [61], and on the
nickel-based ME16 superalloys by Veldhuis et al [62].
Therefore, the ‘skin effect’ exists not only in the hard and
brittle materials, such as ceramics, semiconductor materials,
and glasses, but also in the metallic materials, such as
superalloys and tool steels.

The ‘skin effect’ is an intrinsic property that governs the
damage behavior of the engineering materials. The ‘skin
effect’ can be interpreted as ‘material damage (e.g. cracking,
dislocation, phase transformation) is localized if the material
is loaded at a high strain rate’. In the case of machining, for
example, SSD depth decreases at an increased machining
speed (strain rate), and vice versa.

3. Mechanisms of the ‘skin-effect’ of damage at high
strain rates

3.1. Material embrittlement

Generally, a material subjected to machining undergoes
plastic deformation before it fractures. The plastic deforma-
tion is governed by dislocation motion which is dependent on
strain and strain rate. The relationship between the dislocation
motion and strain rate is inferred based on the Orowan theory
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Figure 3. SSD depth of the hard and brittle materials at different strain rates in machining [22, 49-59]. Other conditions are provided in the

figure legends.

[63], as given in equation (4),

de
— = pbv, 4
it “4)

where p is dislocation density; b is the magnitude of the
Burger’s vector; and v is dislocation velocity [64, 65]. How-
ever, equation (4) only describes an instantaneous motion of a
dislocation excluding the dynamic behaviors, such as nuclea-
tion, immobilization, recovery, and annihilation. Therefore, a
more adequate model is needed. Strain € can be calculated by
equation (5) [66],

e = pbL, &)

where L is the average displacement of a dislocation. Then, the
relationship between the dynamic behaviors of dislocations
and strain rate can be inferred by differentiating both sides of
equation (5),

de _ d(pbL) _dp dL

— bL + pb—, 6
dt dt dt P dt ©)

Therefore, the strain rate in machining is obtained as

de dp
— = —/bL + pbv, 7
dt dt p @

where dp/dt is the change rate of dislocation density. The right
side of equation (7) has two terms, the first term representing
the nucleation and annihilation of dislocations and the second
term representing dislocation movement [67]. The dislocation
velocity v can be resolved by the applied shear stress [67]

Cv = br, 8)

where C is the drag coefficient due to lattice viscosity and 7 is
the applied shear stress. As shown in figure 4, the dislocation
velocity increases with the applied shear stress, but by an
upper limit. The dislocation velocity is bounded by the phonon
drag effects [67—70] with the time between obstacles [71], the
dislocation velocity does not exceed the sound velocity in the
material [72, 73]. At a strain rate high enough to the extent
that the moving dislocations cannot effectively accommodate
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Figure 5. Strain rate dependency of material strengths [77, 78].

loading, more dislocations nucleate, emitting at the sound
velocity, and resulting in a dislocation avalanche.
Dislocations can be classified into two types, mobile and
immobile. The mobile dislocations may be trapped by each
other and turned into immobile ones because of their inter-
actions, including entanglement, attraction, obstruction, etc.
Therefore, material deformation enhances not only disloca-
tion nucleation and motion, but also dislocation immobiliza-
tion. The accumulation of the immobile dislocations increases
the resistance to plastic deformation and leads to material
hardening [75]. At a high strain rate, dislocation avalanche
may dramatically increase the density of the immobile dis-
locations which are responsible for material hardening.
Consequently, the plastic deformation of a material is sup-
pressed before fracturing, namely, the material is embrittled.
In terms of the strength enhancement, both tensile
strength o}, and yield strength o increase with strain rate, as
shown in figure 5. However, as strain rate increases, the yield
stress increases more rapidly than the tensile strength and the

yield-to-tensile ratio o,/0, increases. At a high strain rate
(> 10*s™1), the yield strength approaches the tensile strength.
As a limit, the yield strength can be the same as but never
surpass the tensile strength [76]. In this case, the material
fractures prior to yielding, which is a typical characteristic of
a brittle material. Material embrittlement due to the strain rate
effect is thus realized.

As shown in equation (2), strain rate is determined based
on cutting speed and depth of cut in the case of machining.
Therefore, the strain-rate evoked embrittlement can be acquired
by increasing cutting speed and decreasing depth of cut. As
shown in figure 6 (a), at a cutting speed of 1000 m min~', the
cutting chip exhibited a typical continuous morphology for a
ductile material, such as an aluminum alloy. However, as the
cutting speed increased to 5000 m min~ ', the chip morphology
turned to be fragmental, as shown in figure 6(b), which means
that the material has been embrittled under this condition.

For brittle materials, Lawn and Marshall first proposed
that the ratio of hardness to fracture toughness should be used
to estimate the brittleness of a material [80]. Boccaccini stu-
died the machinability of a glass-ceramics in terms of the
material brittleness represented in equation (9)

B Ko ©))
where H and K, are the hardness and fracture toughness of the
material, respectively.

It should be pointed out that material hardness H is
strain-rate sensitive and generally increases with strain rate
[16, 45, 81-85] due to the strain-rate hardening effect. A
correlation between hardness and strain rate is expressed in

e(l]]ali()][ (10) 86
( ) ’
dt

where m represents strain-rate exponent, and m = 0 for a
rigid-perfectly plastic material and m = 1 for a linear viscous
solid, respectively [87, 88]. Hardness has a power law
dependence on strain rate.

The variation in fracture toughness is complicated.
Machado et al found that the fracture toughness of CFRP
decreased as strain rate increased [89, 90]. Anton et al found
that the dynamic fracture toughness of the Pyrex glass was
greater than the static fracture toughness. However, for the
magnesia partially-stabilized zirconia and yttria-tetragonal
zirconia polycrystals, the dynamic fracture toughness was
smaller than the static fracture toughness [91]. Generally, the
fracture toughness of a material is larger at a high strain rate
than under the static or quasi-static condition. Suresh et al
found that the ratio of the dynamic to static fracture toughness
was in the range of 1.1-1.6 for brittle ceramics [92]. Liu et al
studied the high-speed grinding of silicon carbide ceramics
and concluded that the dynamic fracture toughness was
related to strain rate [93]. Even if both the hardness and
fracture toughness increase with strain rate, the former
demonstrates a higher rate of increase than the latter. There-
fore, as the strain rate increases, the brittleness of a material
increases accordingly.

(10)



Int. J. Extrem. Manuf. 1 (2019) 012007

Topical Review

(a) Cutting speed = 1,000 m/min

(b) Cutting speed V"= 5,000 m/min

Figure 6. Chip morphologies of 7050-T7451 aluminum alloy with the uncut chip thickness of 0.1 mm and the cutting speeds
(@) V = 1000 mmin~' and (b) V = 5000 m min~ ", respectively. Reproduced with permission from [79].
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Zhang et al studied the effect of brittleness of ceramics in
grinding on SSD depth and found that the SSD depth
decreased as brittleness of ceramics increased [94], which is
explained in figure 7. They presented an analytical equation
for SSD depth ¢ in equation (11),

§ =k - ag!/ 1ogB),

(1)

where £ and A are constants; a, is the grit depth of cut.
Equation (11) depicts that in grinding of ceramics, SSD depth
can be suppressed by increasing brittleness of ceramics,
which is obtained with an increased strain rate in high-speed
grinding. In other words, the ‘skin effect’ of SSD distribution
exists in machining of materials at an increased speed.

3.2. Dislocation kinetics

Dislocations can be responsible for the formation of grain
boundaries and cracks. The movement of dislocations is
essential to the evolution of damage. Under an external
loading condition, dislocation nucleation, multiplication, and
motion are to dissipate the loading energy. The dislocations in
a material may be attracted to the free surface by the image
force [95-98]. As a result, the dislocation density in the skin
layer of the material is higher than that in the deeper layers. In
addition, dislocation density should have a larger gradient at a
higher strain rate, and vice versa. If the dislocation density is
not high enough to accommodate the loading from machin-
ing, for example, the dislocation entanglement should first
take place in the skin layer, followed by grain refinement and
cracking. Therefore, at a high strain rate, the distribution of
SSD follows the ‘skin effect’.

3.3. Stress wave effect

At high strain rates, the contribution of stress waves to the
‘skin effect’ of SSD distribution should be taken into con-
sideration. As shown in figure 8, the compressive stress waves
are produced due to the high-speed squeezing by a cutting tool.
The stress waves propagate along the cutting direction and
they are partially reflected by the free surface because of the
shortest propagation distance. The compressive stress waves
can be converted to tensile stress waves from the free surface
reflection, which was also described by Hopkinson [99]. Fol-
lowing this line of reasoning, the reflection waves near the free
surface may produce tensile stress that is unbearable for an
embrittled material. Consequently, cracks mushroom near the
free surface. This may be the reason for the results that the rear
portion (with stress wave reflection) were with more damage
than the front portion of the sample subjected to impact
loading in the study conducted by Jiang ef al [100]. The impact
energy is rapidly dissipated by the mushrooming of the cracks.
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Correspondingly, the cracks are more concentrated in than
away from the surface layer of the workpiece.

3.4. Cracking

Generally, SSD is dependent on stress distribution. Based on
the Boussinesq elastic-field theory [101], as illustrated in
figure 9, there is an elastically stressed (strained) region
beneath the loading point. For an indenter with a sharp tip, the
stress level approaches infinity around the tip and decreases
away from the tip. However, the stress cannot approach in-
finity since a material should yield or fracture as the stress
exceeds the material strength. The region is subjected to
hydrodynamic stress and shear stress which may result in
grain refinement or pulverization.

Material damage is due to the consequence of loading
during which energy is consumed by the material subjected to
loading. Damage is dependent not only on the intensity of
loading stress but also on the process of loading. In other
words, it is also dependent on the strain rate during loading.
At an increased strain rate, the damage increases corre-
spondingly [100, 102]. Ping et al found that the energy
density in breaking a rock increased with the power law of
strain rate [103]. At a high strain rate, the number of small
cracks rapidly increases to effectively absorb the impact
energy, the intersection of the small cracks results in the
comminution of a material. Therefore, material fragmentation
increases with strain rate, as shown in figure 10.

Grady proposed a model to predict fragment size d, based
on the balance between the kinetic energy and the newly
created surface energy, as shown in equation (12) [104],

2012k, \/?
- (pvswe/dr)) ’

where versus is the sonic velocity. The fragment size
decreases at an increased strain rate [105]. The limit to the
grain refinement is likely to be amorphization, as reported by
Zhao et al who discovered that the microstructural change in
the monocrystalline silicon under a laser-induced shock
loading. The surface layer of the silicon was left with layers of
micrometer-sized grains, nanometer-sized grains, amorphous

(12)

silicon, and finally the intact monocrystalline silicon [106],
sequentially in the depth direction.

Figure 11 shows a schematic diagram of SSD in a brittle
material subjected to machining. At the top surface is the
amorphous layer below which is the pulverization layer. The
pulverized material is squeezed by the cutting edge to the two
sides of the groove, forming pile-up. Median and radial cracks
form around the pulverization layer. If a radial crack extends
to the surface, surface chipping occurs.

Stress gradient may also be responsible for the ‘skin
effect” of SSD. At an increased strain rate, the stress gradient
increases, which may result in a concentrated SSD layer
beneath the surface. As described in figure 12(a), at a low
strain rate in machining, SSD depth is large and so is the chip
size. On the other hand, as the strain rate increases, the stress
gradient increases, which results in more concentrated SSD in
the skin layer of the material. As shown in figure 12(b), the
thicknesses of the respective amorphous and pulverization
layers decrease, and so does the chip size. In addition, the
stress level decays faster due to a higher stress gradient, which
results in a reduced SSD depth.

Based on the above analysis, figure 13 describes the dis-
tribution of SSD at different strain rates in machining. The
material at the front of the cutting tool is subjected to both the
deviatoric and hydrostatic stresses. In such a case, the combi-
nation of the two stresses tends to form a pulverization zone
described by Zhang et al [25]. The pulverization zone consists
of microscopic cracks and an amorphous layer (or a grain-
refined layer). Macro-cracks initiate and propagate from the
boundary of the pulverization layer. The free surface of the
workpiece has the least resistance to crack propagation com-
pared to the bulk material down below the surface. Therefore,
based on the principle of the minimum material resistance, the
cracks tend to propagate towards the free surface, which leads to
the damage concentration in the surface layer to cause the ‘skin
effect’. At an increased strain rate, as schematically shown in
figure 13(b), the chip size is decreased and the thicknesses of the
pulverization and amorphous layers are reduced accordingly.
More chipping is expected in the machined surface because of
the material embrittlement at the increased strain rate.

4. Discussion

Based on physics, SSD may be caused by lattice mismatch
(e.g. dislocations and stacking faults) and bond rupture of a
material. Generally, cracking can be a consequence of dis-
locations. For example, it may result from the accumulation
and entanglement of dislocations. Therefore, at high strain
rates, the formation and distribution of dislocations follow the
‘skin effect’ and so does SSD. Dislocations move towards the
free surface under the image force, creating ‘skin effect’,
which leads to the dislocations as well as SSD accumulation
near the free surface. On the other hand, high strain rates tend
to promote dislocation multiplication, which in turn obstructs
material deformation and causes the embrittlement to the
material. Based on an early grinding study conducted by
Zhang and Howes [94] on ceramic materials, SSD depth
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Figure 10. Fragments of sandstone impacted at different strain rates. Reproduced with permission from [102].
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decreases with an increase in the material brittleness. There-
fore, the ‘skin effect’ of the dislocations and the material
embrittlement due to dislocation multiplication lead to the
‘skin effect’ of SSD at high strain rates.

Practically, numerous factors, such as strain and strain
rate, dislocation movement, crack initiation and propagation,
material phase transformation, stress distribution, and stress
wave propagation, as well as the changes in the material
properties, are collectively responsible for the ‘skin effect’ of
SSD. It is difficult to analyze the ‘skin effect” from one factor
alone. However, the effect can be comprehended from the
aspect of energy dissipation.

From the energy point of view, machining is recognized
as an energy rebalance process. A system with the minimum
energy level is the most stable. A material in machining is
activated with an elevated energy that has a tendency to
transform into the most stable state of the minimum energy.
The material damage, including dislocations and cracking, is
a way of energy relaxation. Based on the minimum energy
principle, the damage tends to move towards where the
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energy requirement is the lowest for damage formation. Since
the free surface has the lowest energy for damage formation
compared to other locations within the material, damage tends
to propagate towards the free surface.

In this paper, the effect of temperature rise on damage
formation in machining is temporarily put aside to simplify the
discussion. The temperature in machining indeed affects the
mechanical behavior of a material, such as dislocation kinetics
[107, 108], stress wave propagation, and eventually surface
integrity of a machined part. Specifically, in the conventional
machining of ductile materials, temperature has a notable effect
on the generation of the surface metamorphic layer [17, 20, 109].
Whereas at the high strain-rate machining, the temperature effect
can be neglected. The reason is expatiated in the following.

Temperature rise is a reflection of the heat generation in
machining. The heat in machining of a ductile material is
mainly generated from material shear and friction. However,
at a high strain rate, the material is embrittled, which directly
contributes to the heat reduction from the decreased shear and
friction and thus to the temperature reduction accordingly.

The ‘skin effect’” of damage at high strain rates provides a
guidance for many industrial applications. In machining, the
‘skin effect’ allows to acquire the desired surface quality of a
machined part by increasing strain rate in machining, such as
ultrasonic assisted machining and peening.

5. Concluding remarks and outlook

This paper proposes the ‘skin effect’ of material damage at
high strain rates for the first time. The ‘skin effect’ is
applicable not only to the hard and brittle materials, but also
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to most other engineering materials, such as metallic materi-
als. The paper draws the following concluding remarks.

(a) The ‘skin effect’ of damage is obtained at a high strain
rate in a loading process.

(b) High strain rate results in an increase in material
brittleness.

(c) Brittleness is a material property that contributes to the
‘skin effect’ of damage in a loading process;

The ‘skin effect’ of damage can have numerous industrial
applications. One direct application is the HSM of the diffi-
cult-to-machine materials, such as ceramics, high strength
metals, and composite materials. Nevertheless, many issues
remain unresolved, such as how high the stain rate should be
in order to suppress SSD in machining. Other issues may
include dislocation nucleation and motion, interactions among
dislocations during loading at a high strain rate.

With a rapid development of the modern testing equip-
ment and techniques, to have well-controlled testing condi-
tions comes to reality. High-speed and high precision machine
tools are readily available. In addition, the state-of-the-art
characterization facilities, such as the focused ion beam
device in combination with high-resolution transmission
electron microscopes (HRTEM), the cathode luminescence
device in combination with SEM, are also readily accessible.
With the aforementioned modern testing equipment and
techniques, the unresolved issues are expected to be resolved,
and the underlying physical mechanisms of the ‘skin effect’ of
damage can further be explored in the near future.
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